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The aim of this paper is to assist in understanding the formation of short
pitch corrugation on railway rails. Based on previous work, a linear
mathematical model for the description of the transient wheel±rail dynamics
has been set up. To ensure linearity it is proved that the wheel±track model
remains stable. For the long-term corrugation process a feedback between
transient wheel±rail dynamics and a wear mechanism is assumed. A geometrical
®lter function is introduced which could explain why corrugation wavelengths
observed in practice vary little with train speed. Calculations of the wear
process on the rail show how vehicle speed and wheel and rail dynamics modify
the corrugation response and how corrugation growth can be reduced.

# 1999 Academic Press

1. INTRODUCTION

Corrugation of rails has been observed for more than a hundred years and
causes unwelcome effects such as noise and damage to the track. A large number
of publications has been concerned with the problem and most corrugation types
can be explained to date. The mechanism which leads to so-called short pitch
corrugation, however, is not yet understood. Nowadays, it is common to blame
structural dynamics effects at ®xed frequencies for the formation of short pitch
corrugation [1, 2]. On the basis of this explanation, the corrugation wavelength
should vary in direct proportion to the vehicle speed. This is not observed in
practice, however, where the wavelengths vary only slightly with running speed
[3]. The aim of the paper presented is to clarify this contradiction.
Based on previous work [2, 4], a linear mathematical model for the description

of the transient wheel±rail dynamics has been set up. The model takes into
account the discrete support of the rail, elasticity of the wheelset, all six degrees
of freedom (DOF) of wheel and rail, transient creepage, shift of the contact
point and ®lter effects at short wavelengths. A feedback between transient
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wheel±rail dynamics and a damage mechanism is assumed for the long-term
corrugation process: a wheelset rolls over the initial pro®le irregularity on the
rail. After this wheel passage the rail surface is damaged, which modi®es the
initial pro®le irregularity. The next wheelset then rolls over the modi®ed pro®le
which damages the rail surface again.
The ®rst part of this paper shows how the corrugation development can be

described by a linear wheel±rail model with three subsystems: contact geometry
and kinematics; contact mechanics; wheel and track dynamics.
The relationships between the three subsystems are given and it is investigated

whether the wheel±rail model remains stable. After that, the long-term
corrugation process is described. A wear model is introduced which allows for
the calculation of wear patterns on the rail head and it is investigated how
¯uctuating wear is affected by geometrical effects. This leads to a geometrical
®lter function which promotes corrugation within a ®xed wavelength band. In
the last part, calculations of wear patterns after a high number of wheel passages
show how the rail dynamics modify the corrugation response and that
corrugation is suppressed when constant creepages are reduced.

2. LINEARIZATION OF WHEEL±TRACK DYNAMICS

Generally, the high frequency interaction between wheel and rail and the long-
term corrugation process on the running surface of the rail are non-linear
processes. The non-linearity of the wheel±rail interaction is due to the processes
within the contact patch. While the dynamic motion of wheel and rail can be
assumed to be linear the relations of the rolling contact are generally non-linear.
To consider this behaviour properly a non-linear calculation is necessary.
However, to avoid dif®culties due to variations of parameters, etc., a different
approach is used here, which is described in the following.
The description of the interaction between wheel and rail is divided into a

reference state and a linearized part which ¯uctuates about it. The solution of
each quantity x is then the superposition of a part x0 and a ¯uctuating part fDx

x � x0 � fDx:
The reference state is regarded as quasi-static with respect to the linearized

part. Even low frequency vibrations due to long-wavelength track irregularities
or the hunting motion can be treated as quasi-static. Then, however, it must be
considered that the reference state is different for every moment of the low
frequency motion. The development of a non-linear wheel±rail model for the
description of the reference state is not part of this paper. The reference state is
calculated numerically with an existing program [5].
The linearized part is excited by the pro®le irregularity on the rail. The pro®le

irregularity is Fourier analyzed and hence the wheel±rail model can be described
in the Fourier domain. The linearized part is fDx=Dx ei(2p/L)vt, where L is the
wavelength of one Fourier part of the disturbance and v is the speed of the wheel
rolling over the rail.
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Linearity seems to be a reasonable assumption at least for the beginning of the
wear process. For increasing pro®le amplitudes a non-linear model is necessary.
Then, however, variations of parameters and general statements are more
dif®cult. Nevertheless, it is not clear up to now if even the beginning is a linear
process. In reference [6], for example, it was found that ripples developed due to
frequency modulations, which is a non-linear process. In reference [7] the results
of a linear corrugation model have been compared with measurements and there
was no good agreement. Thus, all results presented here should be veri®ed by
measurements. Even if an exact prediction seems to be unlikely, at least
tendencies should be described correctly. The veri®cation of the presented wheel±
rail model is part of the ongoing project Silent Track, funded by the European
Railway Research Institute (ERRI) [8].

3. TRANSIENT WHEEL±RAIL DYNAMICS AND FEEDBACK LOOP

A harmonic pro®le irregularity on the running surface of the rail causes
harmonic changes in forces and displacements between wheel and rail. The linear
interaction between these ¯uctuating quantities can be described by a feedback
loop. All relationships are given in the following and are summarized in Figure 4
at the end of this section. They are related to the left wheel±rail combination.
Irregularities on the wheel are fully neglected.

3.1. CONTACT GEOMETRY

The pro®le irregularity and relative displacements between wheel and rail can
change geometry parameters. The amplitudes of the ¯uctuating geometry
parameters are (cf. Figure 1) Dr, the amplitude of the longitudinal wheel radius,
DRr, the amplitude of the lateral rail radius, D(1/R), the amplitude of the
longitudinal rail curvature, Da, the amplitude of the lateral contact location, Dd,
the amplitude of the penetration between wheel and rail, and Dxc, the amplitude
of the longitudinal contact location.
The harmonic pro®le irregularity on the running surface of the rail is

described by

Figure 1. Geometry parameters.
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Dz�x, Z� � �Dzw � DzjZ=b� Dzk�32�Z=b�2 ÿ 1
2�� ei�2p=L�x, �1�

where Z is the co-ordinate of the contact system ~eC in the lateral direction (cf.

Figure 1) and 2b is the length of the contact patch normal to the rolling

direction.

When a wheel is rolling over the disturbance with speed v the wheel±track

system is excited by

Dz�t, Z� � �Dzw � DzjZ=b� Dzk�32�Z=b�2 ÿ 1
2�� eOt,

with O=2pv/L.
The relative displacements are de®ned as
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and correspond to the~eCN-system in Figure 2.

The amplitudes of the ¯uctuating geometry parameters are changed by the

amplitudes of the disturbance Dzo , Dzj and Dzk and the amplitudes of the

¯uctuating relative displacements as follows:
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Figure 2. Co-ordinate system for the relative displacements.
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A and B are the mean curvatures in the longitudinal and lateral directions
respectively. Thus,

A � 1
2�1=�r0 � Dr� � �1=�R0 � D�1=R���� and B � 1

2�1=Rwh
0 � 1=�Rr

0 � DRr��,
where the lateral wheel radius is assumed to be constant. Then, the linearized
¯uctuating parts can be derived from the geometry parameters by

DA � 1
2D�1=R� ÿ �1=�2r20��Dr and DB � �1=Rr2

0 �DRr:

3.2. KINEMATICS

The creepages between wheel and rail are determined from the difference
between the components of the wheel and rail velocities at the point of contact
with respect to the contact co-ordinate system ~eC in Figure 1. One obtains for
the amplitudes of the ¯uctuating creepages
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3.3. CONTACT MECHANICS

When wheel and rail are in contact, there is an elastic deformation of both
bodies due to the static load of the railway vehicle. Thus, a contact patch of the
size of a coin exists. The contact forces are transmitted in this contact area. For
the amplitude of the ¯uctuating normal force one may write

DNz � @Nz=@d�Dd� � @Nz=@A�DA� � @Nz=@B�DB�: �5�

Small wavelengths may reduce the effectiveness of the pro®le irregularity. This
can be called the amplitude ®lter effect, for which it is supposed that all three
amplitudes of equation (1) are affected; thus
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where DDDz represents the effective pro®le amplitudes and DDDzgeo represents the real,
geometrically given, pro®le amplitudes.
The ¯uctuating linearized contact mechanics, which takes amplitude ®lter

effects as well as transient creepage [5] into account, is described by



904 S. MUÈ LLER

DTx

DTZ

DNz

DMz

8>><>>:
9>>=>>; � Acon

D�x
D�Z
D�z
Dd
DA
DB
Da
Dxc

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;
, or DDDfc � AconDDDk, with DDDk � DDD�

DDDg

� �
:

3.4. TRANSFORMATION OF THE CONTACT FORCES

From the contact mechanics follow ¯uctuating contact forces, which refer to
the contact coordinate system ~eC in Figure 1. These forces and moments act on
the rail and wheel and cause ¯uctuations in relative displacements between wheel
and rail. The dynamic motion of wheel and rail is described in co-ordinate
systems ~eWH and ~eR, which are in general different from the contact system ~eC

(cf. Figure 3). To calculate the rail and wheel displacements due to the contact
forces, one thus has to transform the contact forces into the wheel and rail
system by
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Figure 3. Forces on the rail.
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or

DDDfWH � GWH
Df DDDfc � LWHDDDk, �7�

and
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c � LRDDDk: �9�
In LWH and LR the constant forces Tx0 , TZ0 , Nz0 and Mz0 from the reference state
are considered.

3.5. WHEEL AND TRACK DYNAMICS

The track model is a frequency domain model using transfer matrices [9]. The
rail is described by ®nite element matrices so that the complex rail pro®le can be
considered. The whole rail is assumed to be in®nite and discretely supported by
the sleepers. Between the rail and the sleepers there are pads. Under the sleepers
is the ballast. Both the pads and the ballast are modelled by linear springs and
dampers. The track is excited by a harmonically oscillating load. The position of
the load within the sleeper bay can be varied.
The wheel is a ®nite element model which consists of rotational symmetric

shells [10]. The axle is a Timoshenko beam including longitudinal and twisting
deformations. Gyroscopic effects can be taken into account but are not
considered here.
There are three forces and three moments acting on wheel and rail which may

cause three displacements and three rotations of the contact point of each body.
This is
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DDDuWH � DWHDDDfWH and DDDuR � DRDDDfR:

3.6. TRANSFORMATION OF THE DISPLACEMENTS

Wheel displacements DDDuWH and rail displacements DDDuR, which are caused by
the dynamic motion of wheel and rail, correspond to wheel and rail co-ordinate
systems ~eWH and ~eR. To insert these displacements into equations (3) and (4)
under consideration of equation (2) they must be transformed into the ~eCN

system ®rst with

DDDuwh � GWH
Du DDDuWH and DDDuc � GR

DuDDDu
R:

3.7. FEEDBACK LOOP AND STABILITY CRITERION

Figure 4 shows the above given relationships as a feedback loop. Note that

CDz � Cdist

Gdist

� �
and CDu � Cdisp

Gdisp

� �
:

The closed loop of Figure 4 might become unstable. Then, in®nitely small
input ripples would cause unbounded forces and displacements. This would
presumably increase rail corrugation and linearity could no longer be assumed.
To avoid this, one must ensure that the closed loop is stable under realistic
railway operating conditions. The following stability analysis is an extension of
the analysis performed in reference [11]. It is covered in more detail in reference
[12].
For the investigation of the stability behaviour a Nyquist stability criterion is

used for which the derivation can be found in reference [13].

G∆u   D      L     – G∆u DR LRWH WH WH R

G∆u   D      G∆f  – G∆u DR GRWH WH WH R
∆f

C∆u

Fampli C∆z

Acon
∆k∆k

∆u

∆zgeo

∆f c

Figure 4. The feedback loop of the transient wheel±track dynamics.
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Nyquist Criterion: Construct the Nyquist plot of G=det(IÿK1(s)K2(s))ÿ 1,
indenting to the left around poles on the imaginary axis. Let n denote the total
number of poles of K1 and K2 in Re se 0. Then the system is stable iff the Nyquist
plot of G does not pass through the critical point ÿ1 and encircles it exactly n
times counterclockwise.
The matrices K1 and K2 are K1=Acon, and K2=CDuD

whÿr, with Dwhÿr=
GWH

Du DWHGWH
Df ÿGB

DuD
RGR

Df, if the feedback due to constant forces of the
reference state is neglected. The corresponding closed loop within the dashed
rectangle in Figure 4 is called the outer loop.

For the inner loop, where the outer loop and the feedback due to constant
forces are interacting, one obtains K1=H22, and K2=GWH

Du DWHLWHÿ
GR

DuD
RLR, with H22 � �Iÿ CDuD

whÿrAcon�ÿ1CDu. It can be shown that the whole
system remains stable if both the inner and the outer loop are stable [11].

4. STABILITY BEHAVIOUR OF A ICE-WHEELSET ON A UIC60 TRACK

Figure 5 shows the Nyquist plot of the outer loop for a ICE-wheelset on a
UIC60 track while the wheel is in midspan and over a sleeper. Note that the
Nyquist plot in Figure 5 is calculated at frequencies from 0 to 2000 Hz, while for
the application of the Nyquist criterion, as given in section 3.7, a plot at
frequencies from ÿ1 to 1 is necessary. Since the curves in Figure 5 do not
cross the real axis between ÿ1 and 0, however, it can be concluded that the outer
loop is stable. It reveals that the inner loop is also stable and thus the whole
system remains stable.

5. CALCULATION OF THE WEAR PATTERN

The pro®le development is calculated by using the frictional energy hypothesis
as proposed in reference [14]. It is assumed that the removed mass m per wheel
passage n is proportional to the frictional work Wfric: @m/@n0Wfric . It follows
for the pro®le irregularity Dzgeo

Figure 5. Nyquist plot of the outer loop for a ICE-wheelset on a UIC60 track. Ð, Sleeper;
- - -, midspan.
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�@Dzgeo=@n� � �ÿk0=rApatch�DWfric ,

where k0 is a proportionality factor, r is the density of the removed material and
Apatch is the area of contact. For the frictional work the same formulation as for
the pro®le irregularity in equation (1) is assumed,

DW�x, Z� � �DWw � DWjZ=b� DWk�32�Z=b�2 ÿ 1
2�� ei�2p=L�x:

Here the coef®cients DWw , DWj and DWk can be expressed by Dzgeow , Dzgeop and
Dzgeok again. Then, one has a system of three differential equations:

�k0=r�WDzDzgeo � I@=@n�Dzgeo� � 0:

WDz is constant for a given harmonic pro®le irregularity but varies with the
position within a sleeper bay. I is the unit matrix and Dzgeo is the vector of the
three pro®le amplitudes.
At a certain position within a sleeper bay the solution can be written as

Dzgeo � Dzgeo1 el1n � Dzgeo2 el2n � Dzgeo3 el3n: �10�
Given disturbances will be ampli®ed if one of the so called wear rates Re{l1},
Re{l2} and Re{l3} is positive, and suppressed if all are negative.
To determine the pro®le development due to statistically given pro®le

irregularities, the disturbance must be Fourier analyzed ®rst. The alteration of
every harmonic Fourier part after one wheel passage is then governed by
equation (10). The sum of all changed Fourier parts after one wheel passage
gives the new pro®le for the next wheel passage. This can be repeated n times
which ®nally gives the amplitudes of the new pro®le after n wheel passages, and
with equation (1) the corresponding wear pattern can be obtained. A more
detailed description of this is given in reference [15].

5.1. ANALYSIS OF GEOMETRICAL EFFECTS ON FLUCTUATING WEAR

The formation of short pitch corrugation depends on whether disturbances
with a speci®c wavelength range are ampli®ed or not. To investigate this all three
wear rates for a ICE wheelset on a UIC60 track are presented in Figure 6. For
these three curves the dynamic motion of wheel and track is omitted. Two things
about Figure 6 should be pointed out. First, Re{l3} will govern the corrugation
process since the other two wear rates are negative or comparatively small.
Second, the behaviour of Re{l3} leads to a geometric ®lter which promotes
corrugation growth in a wavelength band between 0�02 and 0�1 m. This
geometric ®lter is independent of vehicle speed. Broadly similar results have been
obtained in reference [16]. This is encouraging since the methods of calculation
in reference [16] and here are very different.

5.2. WEAR PATTERN FOR A ICE-WHEELSET ROLLING OVER A UIC60 RAIL

In Figures 7 and 8 the wear patterns on the running surface of the rail are
presented within a sleeper bay for v0=50 m/s and v0=20 m/s. In both cases the
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number of wheel passages is 750 000 and the dynamic motion of the wheelset is
omitted. The amplitude spectra of the pro®le height Dzgeo in the middle of both
running surfaces, i.e., for Z=0, are compared in Figure 9. There, it is shown
that the maxima of both amplitude spectra are at wavelengths at which Re{l3}
from Figure 6 promotes corrugation. For different running speeds different
structural dynamics effects are separated out such that the wavelengths of the
wear patterns are within a ®xed wavelength band. This is explained in more
detail by means of Figures 10 and 11.
In Figure 10 the dominant wear rate Re{l3} from Figure 6 is plotted for

v=20 m/s, v=30 m/s and v=50 m/s for various frequencies. Below, Figure 11
shows the lateral and vertical receptance of the rail. A strong in¯uence on the
wear process of the structural dynamics of the rail can be expected, if
characteristic features of the structural dynamics are within a frequency band
where the dominant wear rate Re{l3} is maximum.
For v=20 m/s this leads to a strong in¯uence of structural dynamics effects

on the wear between 200 and 1000 Hz. Within this frequency range the vertical
direct receptance of the rail is minimum at approximately 300 Hz. At this
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frequency the rail is relatively stiff in the vertical direction. This structural
dynamics effect promotes corrugation with wavelengths between 6 and 7 cm.
For a vehicle speed of 50 m/s the wear rate in Figure 10 is maximum between

600 and 2000 Hz. At these high frequencies the lateral dynamics dominates the
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Figure 10. Dominant wear rate for v=20 m/s, v=30 m/s and v=50 m/s (dynamic motion of
wheel and track omitted). Ð, v0=50 m/s; - - - -, v0=30 m/s; ± . ± . , v0=20 m/s.
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Figure 11. Lateral and vertical direct receptance of a UIC60 rail. Ð, Sleeper; - - - -, midspan.
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wear process. At 1500 Hz over a sleeper and near 1600 and 1800 Hz in midspan
the rail is soft in the lateral direction which promotes corrugation with
wavelengths between 2�5 and 3�5 cm.
It might be expected that smaller constant creepages slow down the

corrugation process on the rail. Smaller constant creepages can be obtained by
reducing the misalignment angle of the wheelset and the difference between the
rolling radii of the left and the right wheels.
In Figure 12 the wear rate Re{l3} of Figure 6 is plotted for different constant

creepages. The solid curve has been calculated for a misalignment angle of
ÿ0�083� and a radii difference of 0�67 mm. For the broken curve the
misalignment angle is reduced to ÿ0�0415� and the radii difference is zero. For
the latter case the resulting pro®le irregularity is less periodic and in Figure 13
one can see that amplitudes in the wavelength band 2�5±5 cm are clearly
reduced.
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6. CONCLUDING REMARKS

A linear wheel±track model to predict instabilities and the formation of short
pitch corrugation has been presented. It comprises the discrete support of the
rail, elasticity of the wheelset, all six DOFs of wheel and rail, transient creepage,
shift of the contact point and ®lter effects due to short wavelengths.
It has been shown how a stability analysis can be performed and it has

revealed that the investigated ICE-UIC60 combination remains stable. The
dynamic motion of the wheelset has been neglected, because its damped
eigenmodes made it dif®cult to determine the number of encirclements of the
critical point ÿ1. It remains possible that instability might arise due to wheel
resonances. This should be a matter for future research. To avoid the problem
mentioned, extending the wheelset model is recommended. It should comprise
the primary support, and it should be possible to impose arti®cial structural
damping on the wheelset.
After the stability analysis a wear model has been introduced and it was

demonstrated how the pro®le development due to a high number of wheel
passages can be calculated. For the corrugation process, a wavelength-®xing
mechanism has been found which could explain the relatively small variation of
wavelength of short pitch corrugations. In previous models the low vertical
receptance at approximately f®xed=1000 Hz governed the corrugation process.
With

L � v=ffixed �11�
the corrugation wavelength L would vary in direct proportion to the vehicle
speed v, whereas the wavelengths observed in practice vary little with train speed.
In this work it has been shown that other structural dynamics effects can also

dominate the pro®le development. A geometrical ®lter function, which promotes
corrugation within a ®xed wavelength band, determines which structural
dynamics effect is separated out. Thus, the relationship in equation (11) holds,
but f is related to different structural dynamics effects such that L is within the
wavelength band where the geometrical ®lter function promotes corrugation.
For the calculation of the wear pattern on the rail only the dynamic motion of

the rail has been taken into account while the wheel motion has been neglected.
This simpli®cation could be doubtful when the lateral wheel receptance is clearly
higher than the lateral receptance of the rail, combined with homogeneous traf®c
conditions. In this case, it could be possible to have a strong in¯uence on the rail
pro®le development from the wheelset rather than from the rail. This is analyzed
in more detail in reference [15].
While here the damage mechanism takes account only of wear caused by

friction, at least three additional mechanisms are conceivable. In reference [1] the
consideration of plastic deformations generally reduced the wavelength of short
pitch corrugation and the corrugation growth seemed to be suppressed. Since the
surface on the ridges of pro®le irregularities is harder than in the troughs [17],
the ¯uctuating wear process might be ampli®ed. On the other hand,
measurements showed that the rail surface on ridges is smoother than in troughs
which could counteract rail corrugation [18].
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